Math, asked by yash0808, 1 year ago

show that 7 root 3 is irrational no..

Answers

Answered by Swetha03K
96
Let's assume that 7√3 is rational. Then, there exists two positive integers such that
                                7√3 = a
                                         ---        and HCF(a,b) = 1
                                          b
                                Squaring,
                             (7√3)² = a²
                                          ---
                                           b²
                             49 × 3b² = a²
                                 147b² = a²  →1
                                ⇒147 / a²
                                ⇒147 / a
                                    ∴a = 147c, for some integer c
                                  Squaring,
                                    a² = 21609c²
                             147b² = 21609c²
                                   b² = 147c²
                                 ⇒147 / b²
                                 ⇒147 / b

∴147 / a, 147 / b
∴a and b has common factor as 147.
But our assumption is HCF(a,b) = 1.
∴Our assumption is wrong.

Hence, 7√3 is an irrational no.




Answered by anindadebnath1993
6

Answer:

We have to prove that 3+

7

is irrational.

Let us assume the opposite, that 3+

7

is rational.

Hence 3+

7

can be written in the form

b

a

where a and b are co-prime and b

=0

Hence 3+

7

=

b

a

7

=

b

a

−3

7

=

b

a−3b

where

7

is irrational and

b

a−3b

is rational.

Since,rational

= irrational.

This is a contradiction.

∴ Our assumption is incorrect.

Hence 3+

7

is irrational.

Hence proved.

Similar questions