show that a(-3,2) b(-5,-5) c(2,-3) and d(4,4) are the vertices of rhombus
Answers
Answered by
1
first find AB B.C. AC DA
formula
root (x2-x1)^2+(y2-y1)^2
a(-3,2)=(x1,y1)
b(-5,-5) =(x2,y2)
similar find AB B.C. AC DA
formula
root (x2-x1)^2+(y2-y1)^2
a(-3,2)=(x1,y1)
b(-5,-5) =(x2,y2)
similar find AB B.C. AC DA
Answered by
4
ANSWER:
A(-3,2)
B(-5,-5)
C(2,-3)
D(4,4)
in a rhombus all sides r equal...
AB=√{(-5+3)²+(-5-2)²}
AB=√{(-2)²+(-7)²}
AB=√{4+49}
AB=√53
BC=√{(2+5)²+(-3+5)²}
BC=√(49+4)
BC=√53
CD=√{(4-2)²+(4+3)²}
CD=√49+4
CD=√53
AD=√{(4+3)²+(4-3)²}
AD=√{49+4}
AD=√53
AB=BC=CD=AD
in a rhombus diagonal is not equal
AC IS A DIAGONAL,
AC=√{(2+7)²+(-3-2)²}
AC=√{(9)²+(-5)²}
AC=√{81+25}
AC=√106
BD IS A DIAGONAL,
BD=√{(4+5)²+(4+4)²}
BD=√{(9)²+(8)²}
BD=√{81+64}
BD=√145
AC IS NOT EQUAL TO BD
SO, ITS A RHOMBUS
A(-3,2)
B(-5,-5)
C(2,-3)
D(4,4)
in a rhombus all sides r equal...
AB=√{(-5+3)²+(-5-2)²}
AB=√{(-2)²+(-7)²}
AB=√{4+49}
AB=√53
BC=√{(2+5)²+(-3+5)²}
BC=√(49+4)
BC=√53
CD=√{(4-2)²+(4+3)²}
CD=√49+4
CD=√53
AD=√{(4+3)²+(4-3)²}
AD=√{49+4}
AD=√53
AB=BC=CD=AD
in a rhombus diagonal is not equal
AC IS A DIAGONAL,
AC=√{(2+7)²+(-3-2)²}
AC=√{(9)²+(-5)²}
AC=√{81+25}
AC=√106
BD IS A DIAGONAL,
BD=√{(4+5)²+(4+4)²}
BD=√{(9)²+(8)²}
BD=√{81+64}
BD=√145
AC IS NOT EQUAL TO BD
SO, ITS A RHOMBUS
jude0704:
thanks frnd
Similar questions