show that: (a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=0
Answers
Answered by
110
I hope it helps you ...............................
Attachments:
Answered by
8
Given,
(a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=0
To prove,
(a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=0
Solution,
We can simply solve this mathematical problem using the following process:
As per the algebraic identities;
If x and y are two variables,
then (x+y)(x-y) = x^2 - y^2
Now,
LHS = (a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)
= {(a-b)(a+b)} + {(b-c)(b+c)} + {(c-a)(c+a)}
= {(a^2 - b^2)} + {(b^2 - c^2)} + {(c^2 - a^2)}
{Using the algebraic identity: (x+y)(x-y) = x^2 - y^2}
= {a^2 - b^2 + b^2 - c^2 + c^2 - a^2}
= 0 = RHS
Hence, it is proved that (a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=0.
Similar questions