Math, asked by jeettamang2002, 3 months ago

show that (a^m÷a^-n)^m-n×(a^n÷a^-1)^n-1×(a^1÷a^-m)^1-m =1

Answers

Answered by Anonymous
2

Answer:

( \frac{a {}^{m} }{a {}^{ - n} } ) {}^{m - n}  \times  (\frac{a {}^{n} }{a {}^{ - 1} } ) {}^{n - 1}  \times  (\frac{a {}^{1} }{a {}^{ - m} } ) {}^{1 - m}  \\  \\  =( a {}^{m - ( - n)} ) {}^{m - n}  \times (a {}^{n - ( - 1)} ) {}^{n - 1}  \times (a {}^{1 - ( - m)} ) {}^{1 - m}  \\  \\  = (a {}^{m + n} ) {}^{m - n}  \times (a {}^{n  + 1} ) {}^{n - 1}  \times( a {}^{1 + m} ) {}^{1 - m}  \\  \\  = a {}^{m {}^{2}  - n {}^{2} }  \times a {}^{n {}^{2}  - 1{}^{2} }  \times a {}^{1 {}^{2} - m {}^{2}  }  \\  \\  = a {}^{m {}^{2}  - n {}^{2} + n {}^{2}  - 1 {}^{2}  + 1 {}^{2} - m {}^{2}   }  \\  \\  = a {}^{0}  \\  \\  = 1  \:  \:  \:  \: (proved)\\  \\  \\ formula \:  -  \:  \:  \:  \:  \frac{x {}^{m} }{x {}^{n} }  = x {}^{m - n }  \\  \\ x {}^{m}  \times x {}^{n}  = x {}^{m + n}  \\  \\ (x {}^{m} ) {}^{n}  = x {}^{mn}  \\  \\ x {}^{0}  = 1 \\  \\ (x + y)(x - y) = x {}^{2}  - y {}^{2}

Similar questions