Math, asked by patoleVaibhav1, 1 year ago

show that all the diagonal elements of a skew symmetric matrix are zero

Answers

Answered by ranjanalok961
66

Answer:

See attachment

Step-by-step explanation:

Attachments:
Answered by sourasghotekar123
0

Step-by-step explanation:

TO FIND: All the diagonal elements of a skew symmetric matrix are zero

skew symmetric matrix :

                                        A matrix can be skew symmetric only if it happens to be square. A skew-symmetric matrix is a matrix whose transposed form is equal to the negative of that matrix.

In case the transpose of a matrix happens to be equal to the negative of itself, then one can say that the matrix is skew symmetric. Therefore, for a matrix to be skew symmetric, A'=-A.

       Let us consider   A=[a_{ij} ]  is a skew symmetric matrix.

                       From definition A^{T} =-A

                          The    ( i j )  element of A^{T} =The ( i j ) element of -A

                                    a_{ij} =-a_{ji} , for al i and j

  For the diagonal elements  i=j , ( i i ) element of A = - ( i i ) element of A

                                     a_{ij} =-a_{ii} , for all value of i.

                                     2a_{ii} =0

                                         a_{ii} =0 , for all values of i.

                    Therefore a_{11} =a_{22}=a_{33} =a_{44}.............a_{nn} =0                  

                                             

The project code is #SPJ2

Similar questions