Show that any positive odd integer is in the form of 8q+1 or 8q+3 or 8q+5 or 8q+7.where q is some integer
Answers
Answered by
4
Hey there!
let us start with with taking a, where a is a positive odd integer.
We apply the division algorithm with a and b = 8.
since 0 ≤ r < 8 the possible remainders are 0,1,2,....7.
That is a can be 8q or8q+1 or 8q+2 or 8q+3 or 8q+4or 8q+5 or 8q+6 where q is quotient.
How ever since a is odd a cannt be 8q or 8q+2 or 8q+4 (since they are divisible by 2).
There fore, any odd integer is of the form 8q+1, 8q+3, 8q+5 or 8q+7.
Hope it help
let us start with with taking a, where a is a positive odd integer.
We apply the division algorithm with a and b = 8.
since 0 ≤ r < 8 the possible remainders are 0,1,2,....7.
That is a can be 8q or8q+1 or 8q+2 or 8q+3 or 8q+4or 8q+5 or 8q+6 where q is quotient.
How ever since a is odd a cannt be 8q or 8q+2 or 8q+4 (since they are divisible by 2).
There fore, any odd integer is of the form 8q+1, 8q+3, 8q+5 or 8q+7.
Hope it help
Answered by
0
Answer:
Step-by-step explanation:
Yes
Let a be any positive integer
According to Euclids division lemma
a = bq + r
b = 8
so the possible values of r = 0,1,2,3,4,5,6,7
a = 8q ( it is even)
a = 8q + 1 ( it is odd)
..........and so on
Similar questions