Show that any positive odd integer is of the form 4q+1 or 4q+3 where q is a positive integer??
Pleaase answer fasti have exam tommorow!!
Answers
Answered by
0
let a be any positive integer
then
b= 4
a= bq+r
0≤r<b
0≤r<4
r= 0,1,2,3
case 1.
r=0
a= bq+r
4q+0
4q
case 2.
r=1
a= 4q+1
6q+1
case3.
r=2
a=4q+2
case 4.
r=3
a=4q+3
hence from above it is proved that any positive integer is of the form 4q, 4q+1,4q+2,4q+3
Answered by
0
solutions :-
Let m be any positive integer
then
b= 4
m= bq+r
0≤r<b
0≤r<4
r= 0,1,2,3
case 1.
r=0
m= bq+r
4q+0
4q
case 2.
r=1
m= 4q+1
6q+1
case3.
r=2
m=4q+2
case 4.
r=3
m=4q+3
Hence
it is proved that any positive integer is of the form 4q, 4q+1,4q+2,4q+3
Thanks
@Anushka
Let m be any positive integer
then
b= 4
m= bq+r
0≤r<b
0≤r<4
r= 0,1,2,3
case 1.
r=0
m= bq+r
4q+0
4q
case 2.
r=1
m= 4q+1
6q+1
case3.
r=2
m=4q+2
case 4.
r=3
m=4q+3
Hence
it is proved that any positive integer is of the form 4q, 4q+1,4q+2,4q+3
Thanks
@Anushka
Similar questions