Show that any positive odd integer is of the form 6q + 1 or 6 q + 3or 6q+ 5 where q is some integer?
Answers
Answered by
4
Answer:
Let the positive integer be a and b=6
According to Euclid's division lemma,
a=bq+r where.. 0<and=r<b
Here, a=6q+r....0<and=r<6
So possible values of b are 0,1...5.
Now,
CASE1:r=0
a=6q+0
a=6q.....................EVEN
CASE2: r=1
a=6q+1................ODD
CASE3: r=2,
a=6q+2.................EVEN
CASE4: r=3................
...................
DO SIMILARLY REST Part...............
......................
...............
Hence,any positive odd integer is of the form 6q+1,6q+3 or 6q+5
HOPE THIS ANSWER HELPS U☺️
Similar questions