Show that any positive odd integer is of the form 6q + 1, or 6q + 3, or 6q + 5, where q is some integer.
Answers
Answered by
6
hello there .. !!!!
•••••••••••••••••••••••••••••••••••••••••••••••••
ur solution is here
•••••••••••••••••••••••••••••••••••••••
let 'a' be a positive integer, b=6
Applying Euclid division Algorithm
a=bq+r {0 _< r < b }
a=6q+r
now, r = 0,1,2,3,4,5
r=0,a=6q=0=6q
r=1,a=6q+1
r=2,a=6q+2
r=3,a=6q+3
r=4,a=6q+4
r=5,a=6q+5
Now,
a=6q=even
a=6q+1=odd
a=6q+2=even
a=6q+3=odd
a=6q+4=even
a=6q+5=odd
therefore. positive odd number is in the form of 6q+1, 6q+3, 6q+5.
•••••••••••••••••••••••••••••••••••••••••••••••••
ur solution is here
•••••••••••••••••••••••••••••••••••••••
let 'a' be a positive integer, b=6
Applying Euclid division Algorithm
a=bq+r {0 _< r < b }
a=6q+r
now, r = 0,1,2,3,4,5
r=0,a=6q=0=6q
r=1,a=6q+1
r=2,a=6q+2
r=3,a=6q+3
r=4,a=6q+4
r=5,a=6q+5
Now,
a=6q=even
a=6q+1=odd
a=6q+2=even
a=6q+3=odd
a=6q+4=even
a=6q+5=odd
therefore. positive odd number is in the form of 6q+1, 6q+3, 6q+5.
Answered by
8
Let a be any odd positive integer and b=6
Then, there exist integers q and r such that
a = 6q + r , 0≤r<6
a = 6q or,
a = 6q + 1 or,
a = 6q + 2 or,
a = 6q + 3 or,
a = 6q + 4 or,
a = 6q + 5
But , 6q , 6q + 2 and 6q + 4 are even positive integers
Therefore , a = 6q + 1 or, 6q + 3 or , 6q + 5
Then, there exist integers q and r such that
a = 6q + r , 0≤r<6
a = 6q or,
a = 6q + 1 or,
a = 6q + 2 or,
a = 6q + 3 or,
a = 6q + 4 or,
a = 6q + 5
But , 6q , 6q + 2 and 6q + 4 are even positive integers
Therefore , a = 6q + 1 or, 6q + 3 or , 6q + 5
Similar questions