Physics, asked by sah6, 1 year ago

show that coefficient of superficial expansion is twice of coefficient of linear expansion. Can any 1 solve this problem problem

Answers

Answered by shivendra07
18
here u go I hope this will help u :)
Attachments:
Answered by SushmitaAhluwalia
8

Relationship between coefficient of superficial expansion and coefficient of linear expansion:

  • Let

              l = length of the surface

              b = breadth of the surface

             Δl = change in length

             Δb = change in breadth

             ΔT = change in temperature

  • Coefficient of linear expansion is given by

            \alpha = Δl/lΔT

            \alphalΔT = Δl

        ⇒ l + Δl = l+\alpha lΔT

       ⇒  l + Δl = l(1 + \alphaΔT) -----------------(1)

  • Similarly

        ⇒ b + Δb = b(1+\alphaΔT)  --------------(2)

  • Now, coefficient of areal expansion is given by

            \beta = ΔA/AΔT          ------------------(3)

           A + ΔA =  l(1 + \alphaΔT)b(1+\alphaΔT)

           A + ΔA = lb(1+\alphaΔT)^2

           A + ΔA = A(1 + 2\alphaΔT)                  [∵ \alpha is very small]

           A + ΔA = A + 2A\alphaΔT

            ΔA = 2A\alphaΔT      ---------------------(4)

  • Substituting (4) in (3), we get

             \beta = 2A\alphaΔT/AΔT

             ∴ \beta =2\alpha

  • Hence, the coefficient of superficial expansion is twice the coefficient of linear expansion.
Similar questions