Math, asked by mukundkale, 1 year ago

Show that cos^2/1- tan + sin^3/ sin - cos = 1+ sin , cos

Answers

Answered by madhu100
27
hope it will help you
Attachments:
Answered by amirgraveiens
18

cos^2/1- tan + sin^3/ sin - cos = 1+ sin , cos

Proved below.

Step-by-step explanation:

Given:

Let \frac{cos^2x}{1 - tan^2x} +\frac{sin^3x}{Sin x - Cos x} =1 +sinx cosx

L.H.S.

=\frac{cos^2x}{1 - tan^2x} +\frac{sin^3x}{sin x - cos x}

= \frac{cos^2x}{1-\frac{sinx}{cosx}}+\frac{sin^3x}{sinx-cosx}  [tanx=\frac{sinx}{cosx}]        

= \frac{cos^2x}{\frac{cosx-sinx}{cosx}}+\frac{sin^3x}{sinx-cosx}

= \frac{cos^3x}{cosx-sinx}+\frac{sin^3x}{sinx-cosx}

=\frac{cos^3x}{-(sinx-cosx)}+\frac{sin^3x}{sinx-cosx}

=\frac{sin^3x-cos^3x}{sinx-cosx}

=\frac{(sinx - cosx)(sin^2x + cos^2x +sin x cos x)}{sinx-cosx}   [a^3 - b^3 = ( a - b )(a^2 + b^2 + ab )]

=(sin ^2 x + cos^2 x +sin x cos x )

=1 + sin xcos x                           [sin ^2 x + cos^ 2 x = 1]

=R.H.S.

Hence proved.

Similar questions