Math, asked by MuhammadBilal5391, 1 year ago

show that cos 2 (45 + theta) + cos 2 (45 - theta) / tan (60 + theta) tan (30 - theta) = 1

Answers

Answered by SharmaShivam
644

Solution:

To Show:

\dfrac{cos^2(45+\theta)+cos^2(45-\theta)}{tan(60+\theta).tan(30-\theta)}=1

Formulas Used:

cosA=sin(90-A)\\\\tanA=cot(90-A)\\\\cos^2A+sin^2A=1\\\\tanA.cotA=1

Proof:

Taking Left Hand Side,\dfrac{cos^2(45+\theta)+cos^2(45-\theta)}{tan(60+\theta).tan(30-\theta)}\\\\\\=\dfrac{cos^(45+\theta)+sin^2(90-45+\theta)}{tan(60+\theta).cot(90-30+\theta)}\\\\\\=\dfrac{cos^2(45+\theta)+sin^2(45+\theta)}{tan(60+\theta).cot(60+\theta)}\\\\\\=\dfrac{1}{1}\\\\\\=1

Right Hand Side = Left Hand Side.

Hence Proved.

Answered by GaurabNath
94

here is u r perfect answer

thank u

mark it as brsinlist

Attachments:
Similar questions