Show that cos A = . Hence find the value of cos 15°.
Answers
Answered by
30
RHS = cos3A/(2cos2A - 1)
we know, cos3x = 4cos³x - 3cosx
cos2x = 2cos²x - 1
so, cos3A/(2cos2A - 1) = (4cos³A - 3cosA)/{2(2cos²A - 1) - 1}
= (4cos³A - 3cosA)/(4cos²A - 3 )
= cosA(4cos²A - 3)/(4cos²A - 3)
= cosA = LHS [ hence proved]
cos15° = cos3 × 15°/{2 cos2(15°) - 1}
= cos45°/{2cos30° - 1}
= (1/√2)/{2 × √3/2 - 1}
= (1/√2)/{√3 - 1} × (√3 + 1)/(√3 + 1)
= (√3 + 1)/(√3² - 1²)√2
= (√3 + 1)/2√2
hence,cos15° = (√3 + 1)/2√2
Answered by
15
HELLO DEAR,
cos3A/(2cos2A - 1)
we know, cos3x = 4cos³x - 3cosx
cos2x = 2cos²x - 1
so, cos3A/(2cos2A - 1) = (4cos³A - 3cosA)/{2(2cos²A - 1) - 1}
=> (4cos³A - 3cosA)/(4cos²A - 3 )
=> cosA(4cos²A - 3)/(4cos²A - 3)
=> cosA
now,
cos15° = cos3 × 15°/{2 cos2(15°) - 1}
=> cos45°/{2cos30° - 1}
=> (1/√2)/{2 × √3/2 - 1}
=> (1/√2)/{√3 - 1} × (√3 + 1)/(√3 + 1)
=> (√3 + 1)/(√3² - 1²)√2
=> (√3 + 1)/2√2
hence,cos15° = (√3 + 1)/2√2
I HOPE IT'S HELP YOU DEAR,
THANKS
cos3A/(2cos2A - 1)
we know, cos3x = 4cos³x - 3cosx
cos2x = 2cos²x - 1
so, cos3A/(2cos2A - 1) = (4cos³A - 3cosA)/{2(2cos²A - 1) - 1}
=> (4cos³A - 3cosA)/(4cos²A - 3 )
=> cosA(4cos²A - 3)/(4cos²A - 3)
=> cosA
now,
cos15° = cos3 × 15°/{2 cos2(15°) - 1}
=> cos45°/{2cos30° - 1}
=> (1/√2)/{2 × √3/2 - 1}
=> (1/√2)/{√3 - 1} × (√3 + 1)/(√3 + 1)
=> (√3 + 1)/(√3² - 1²)√2
=> (√3 + 1)/2√2
hence,cos15° = (√3 + 1)/2√2
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions