Math, asked by NagendravarmaM, 1 year ago

show that cos(x+y)=cosx cosy -sinx siny

Answers

Answered by Anonymous
4
Heya user,

Let 
ˆAandˆB be two unit vectors in the x-y plane such that ˆA makes an angle −A and ˆB makes an angle B with x-axis so that the angle between the two is (A+B) 
The unit vectors can be written in Cartesian form as
ˆA=cosAˆisinAˆj and ˆB=cosBˆi+sinBˆj ....(1)

To prove
cos(A+B)=cosAcosBsinAsinB

We know that dot product of two vectors is

 \limits^{-\ \textgreater \ }_A . \limits^{-\ \textgreater \ }_B = |\limits^{-\ \textgreater \ }_A|| \limits^{-\ \textgreater \ }_B|cos θ


Inserting our unit vectors in the above; | ^{-\ \textgreater \ }_A | =| ^{-\ \textgreater \ }_B| = 1 and value of θ=(A+B), we obtain

ˆAˆB=cos(A+B)
Using equation (1) 
LHS =(cosAˆisinAˆj)(cosBˆi+sinBˆj)
From property of dot product we know that only terms containing ˆiˆiandˆjˆj are=1 and rest vanish.
∴ LHS=cosAcosBsinAsinB

Equating LHS with RHS we obtain :

cos(A+B)=cosAcosBsinAsinB

You can use x, y as substitutes for A & B.......


NagendravarmaM: tankeeeewww
Anonymous: Np.
Similar questions