Math, asked by swathibr135, 6 days ago

show that cos2A/secA-sin2A/cosecA=cos3A

Answers

Answered by dineshdahikar10
0
  • cos2A/1/cosA-sin2A/1/sinA=cos3A
  • cos2A*cosA-sin2A*sinA
  • cos(2A+A)
  • cos3A=cos3A
  • L.H.S=R.H.S
  • hence it is proved
Answered by mathdude500
6

Question :-

Show that

\rm \: \dfrac{cos2A}{secA}  - \dfrac{sin2A}{cosecA}  \:  = \: cos3A  \\

\large\underline{\sf{Solution-}}

Consider LHS

\rm \: \dfrac{cos2A}{secA}  - \dfrac{sin2A}{cosecA}  \\

can be rewritten as

\rm \: =  \:cos2A \: cosA \:  -  \: sin2A \: sinA \\

We know,

\boxed{\sf{  \:\rm \: cosx \: cosy \:  -  \: sinx \: siny \:  =  \: cos(x + y) \:  \: }} \\

So, using this identity, we get

\rm \: =  \:cos(2A + A) \\

\rm \: =  \:cos 3A \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \: \dfrac{cos2A}{secA}  - \dfrac{sin2A}{cosecA}  \:  = \: cos3A \:  \: }}  \\

\rule{190pt}{2pt}

Alternative Method :-

Consider LHS

\rm \: \dfrac{cos2A}{secA}  - \dfrac{sin2A}{cosecA}  \\

can be further rewritten as

\rm \:=  \: \dfrac{2cos^{2} A - 1}{secA}  - \dfrac{2sinA \: cosA}{cosecA}  \\

\rm \: =  \:( {2cos}^{2}A - 1)cosA - 2 {sin}^{2}A \: cosA \\

\rm \: =  \: {2cos}^{3}A - cosA - 2 (1 - {cos}^{2}A) \: cosA \\

\rm \: =  \: {2cos}^{3}A - cosA - 2cosA +  {2cos}^{3}A  \\

\rm \: =  \: {4cos}^{3}A - 3cosA \\

\rm \: =  \:cos3A \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \: \dfrac{cos2A}{secA}  - \dfrac{sin2A}{cosecA}  \:  = \: cos3A \:  \: }}  \\

\rule{190pt}{2pt}

Additional Information :-

\boxed{\sf{  \:\rm \: sin2x = 2sinx \: cosx \:  \: }} \\

\boxed{\sf{  \:\rm \: cos2x =  {2cos}^{2} x - 1 \:  \: }} \\

\boxed{\sf{  \:\rm \: cos2x = 1 -  {2sin}^{2} x \:  \: }} \\

\boxed{\sf{  \:\rm \: cos3x =  {4cos}^{3}x - 3cosx  \:  \: }} \\

\boxed{\sf{  \:\rm \: sin3x =3sinx  -  {4sin}^{3}x   \:  \: }} \\

Similar questions