. Show that cos4A-Sin4A=1-2Sin2A
Answers
Answered by
4
Prove:
Prove:Cos^4A - Sin^4A = 1 - 2Sin^2A
Prove:Cos^4A - Sin^4A = 1 - 2Sin^2AStarting with left side
Prove:Cos^4A - Sin^4A = 1 - 2Sin^2AStarting with left sidecos^4-sin^4
Prove:Cos^4A - Sin^4A = 1 - 2Sin^2AStarting with left sidecos^4-sin^4=(cos^2+sin^2)(cos^2-sin^2)
Prove:Cos^4A - Sin^4A = 1 - 2Sin^2AStarting with left sidecos^4-sin^4=(cos^2+sin^2)(cos^2-sin^2)=(cos^2+sin^2)(1-sin^2-sin^2)
Prove:Cos^4A - Sin^4A = 1 - 2Sin^2AStarting with left sidecos^4-sin^4=(cos^2+sin^2)(cos^2-sin^2)=(cos^2+sin^2)(1-sin^2-sin^2)=1(1-2sin^2)
Prove:Cos^4A - Sin^4A = 1 - 2Sin^2AStarting with left sidecos^4-sin^4=(cos^2+sin^2)(cos^2-sin^2)=(cos^2+sin^2)(1-sin^2-sin^2)=1(1-2sin^2)=1-2sin^2
Prove:Cos^4A - Sin^4A = 1 - 2Sin^2AStarting with left sidecos^4-sin^4=(cos^2+sin^2)(cos^2-sin^2)=(cos^2+sin^2)(1-sin^2-sin^2)=1(1-2sin^2)=1-2sin^2verified:
Prove:Cos^4A - Sin^4A = 1 - 2Sin^2AStarting with left sidecos^4-sin^4=(cos^2+sin^2)(cos^2-sin^2)=(cos^2+sin^2)(1-sin^2-sin^2)=1(1-2sin^2)=1-2sin^2verified:left side = right side
HOPE IT HELPS YOU
MARK IT AS BRAINLIEST ANSWER
Similar questions