Math, asked by arvindec3407, 1 year ago

Show that cosec theta + cot theta divided by cosec theta minus cot theta is equals to 1 + 2 cos square theta + 2 cos theta cos theta

Answers

Answered by Anonymous
0

Answer:


Step-by-step explanation:


Cosec A + Cot A = P


= 1/Sin A + Cos A / Sin A = P


= 1+Cos A/Sin A = p


=> SQUARING ON BOTH SIDES


= (1+COS A)²/(SINA)²= P²


= (1+ Cos A)² / (Sin A)² = P²


= (1+cos A)² = (p²)[(Sin A)²]


= (1+ cos A) ² = (p²) [(1-cos²A)]


= (1+ cos A) ² = (p²) [ (1+cosA)(1-cos A) ]


= (1+cos A)² ÷ (1+ cos A) = (p²)[(1-cos A)]


= 1+cos A = (p²)[1-cos A]


= 1+cos A ÷ 1-cos A = p²


= Here, Using (a+b/a-b=c+d/c-d). This is known as Componendo and dividendo


According to the Question statement!



1+cos A ÷ 1-cos A = p²


Then,


(1+cos A) + (1 - cos A ) ÷ (1+ Sin A - (1-sin A) = p²+1 / p²-1


= 2/2cos = p²+1/p²-1


= 1/cos = p²+1/p²-1


= Sec = p²+1 /p²-1


We know that Cos A = 1/sec A


Then,


Cos A = p²-1 /p²+1

Similar questions