Math, asked by vanshu1465, 1 year ago

show that (cosecA-sinA)(secA-cosA)(tanA+cotA)=1

Answers

Answered by Anonymous
8

Answer:


Step-by-step explanation:

(cosecA-sinA)(secA-cosA)(tanA+cotA)


(1/sinA - sinA) (1/cosA - cosA) (1/cotA

+cotA)


(1-sin^2 A/sinA) (1-cos^2 A/cos A) (1-cot^2 A/cotA)


(cos^2 A /sinA) (sin^2 A /cosA) (cosec^2 A/cotA)


(cos^2 A /sinA) (sin^2 A /cosA) (1/sin^2 A /cosA/sinA)


(cos^2 A /sinA) (sin^2 A /cosA) (1/sinA /cosA/1)


(cos^2 A /sinA) (sin^2 A /cosA) (1/sinA.cosA)



(cos^2 A /sinA) (sin^2 A /cosA) (1/sinA.cosA)


CosA. SinA. (1/sinA.cosA)


1=RHS


PROVED


HOPE IT HELPS YA


✌✌✌

Similar questions