show that (cosecA-sinA)(secA-cosA)(tanA+cotA)=1
Answers
Answered by
8
Answer:
Step-by-step explanation:
(cosecA-sinA)(secA-cosA)(tanA+cotA)
(1/sinA - sinA) (1/cosA - cosA) (1/cotA
+cotA)
(1-sin^2 A/sinA) (1-cos^2 A/cos A) (1-cot^2 A/cotA)
(cos^2 A /sinA) (sin^2 A /cosA) (cosec^2 A/cotA)
(cos^2 A /sinA) (sin^2 A /cosA) (1/sin^2 A /cosA/sinA)
(cos^2 A /sinA) (sin^2 A /cosA) (1/sinA /cosA/1)
(cos^2 A /sinA) (sin^2 A /cosA) (1/sinA.cosA)
(cos^2 A /sinA) (sin^2 A /cosA) (1/sinA.cosA)
CosA. SinA. (1/sinA.cosA)
1=RHS
PROVED
HOPE IT HELPS YA
✌✌✌
Similar questions