Show that Cot A + Cosec A-1 / Cot A -CosecA + 1 = Cosec A + Cot A.
Please help me in solving this question
Answers
Step-by-step explanation:
Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction: Dry friction is a force that opposes the relative lateral motion of two solid surfaces in contact.
Answer:
\huge\boxed{\underline{\underline{\green{\tt Solution}}}} < /p > < p >
Solution
</p><p>
\displaystyle \: \frac{CotA - 1 + CosecA}{CotA + 1 - CosecA}
CotA+1−CosecA
CotA−1+CosecA
= \displaystyle \: \frac{CotA + CosecA - 1}{CotA - CosecA + 1}=
CotA−CosecA+1
CotA+CosecA−1
= \displaystyle \: \frac{CotA + CosecA - ( {Cosec}^{2}A - {Cot}^{2}A) }{CotA + 1 - CosecA}=
CotA+1−CosecA
CotA+CosecA−(Cosec
2
A−Cot
2
A)
=\frac{(CotA + CosecA )-(CosecA + CotA )(CosecA - CotA ) }{CotA + 1 - CosecA}=
CotA+1−CosecA
(CotA+CosecA)−(CosecA+CotA)(CosecA−CotA)
= \frac{(CotA + CosecA )(CotA + 1 - CosecA)}{(CotA + 1 - CosecA)}=
(CotA+1−CosecA)
(CotA+CosecA)(CotA+1−CosecA)
= (CotA + CosecA)=(CotA+CosecA)