show that (cotA-1+cosecA) /(CotA+1-cosecA)=cotA+cosecA
Answers
Answered by
3
Answered by
0
\huge\boxed{\underline{\underline{\green{\tt Solution}}}}
Solution
\displaystyle \: \frac{CotA - 1 + CosecA}{CotA + 1 - CosecA}
CotA+1−CosecA
CotA−1+CosecA
= \displaystyle \: \frac{CotA + CosecA - 1}{CotA - CosecA + 1}=
CotA−CosecA+1
CotA+CosecA−1
= \displaystyle \: \frac{CotA + CosecA - ( {Cosec}^{2}A - {Cot}^{2}A) }{CotA + 1 - CosecA}=
CotA+1−CosecA
CotA+CosecA−(Cosec
2
A−Cot
2
A)
=\frac{(CotA + CosecA )-(CosecA + CotA )(CosecA - CotA ) }{CotA + 1 - CosecA}=
CotA+1−CosecA
(CotA+CosecA)−(CosecA+CotA)(CosecA−CotA)
= \frac{(CotA + CosecA )(CotA + 1 - CosecA)}{(CotA + 1 - CosecA)}=
(CotA+1−CosecA)
(CotA+CosecA)(CotA+1−CosecA)
= (CotA + CosecA)=(CotA+CosecA)
Similar questions
Social Sciences,
4 months ago
Computer Science,
4 months ago
Biology,
4 months ago
Science,
9 months ago
Hindi,
1 year ago
Biology,
1 year ago