Math, asked by Mathephobia, 9 months ago

show that (cotA-1+cosecA) /(CotA+1-cosecA)=cotA+cosecA​

Answers

Answered by pulakmath007
3

\huge\boxed{\underline{\underline{\green{\tt Solution}}}} </p><p>

  \displaystyle \: \frac{CotA - 1 + CosecA}{CotA  + 1  - CosecA}

 =   \displaystyle \: \frac{CotA  + CosecA - 1}{CotA    - CosecA + 1}

 =   \displaystyle \: \frac{CotA  + CosecA - ( {Cosec}^{2}A -  {Cot}^{2}A)  }{CotA  + 1  - CosecA}

 =\frac{(CotA  + CosecA )-(CosecA  + CotA )(CosecA   -  CotA ) }{CotA  + 1  - CosecA}

 =   \frac{(CotA  + CosecA )(CotA  + 1  - CosecA)}{(CotA  + 1  - CosecA)}

 = (CotA  + CosecA)

Answered by uttkarsh7525
0

\huge\boxed{\underline{\underline{\green{\tt Solution}}}}

Solution

\displaystyle \: \frac{CotA - 1 + CosecA}{CotA + 1 - CosecA}

CotA+1−CosecA

CotA−1+CosecA

= \displaystyle \: \frac{CotA + CosecA - 1}{CotA - CosecA + 1}=

CotA−CosecA+1

CotA+CosecA−1

= \displaystyle \: \frac{CotA + CosecA - ( {Cosec}^{2}A - {Cot}^{2}A) }{CotA + 1 - CosecA}=

CotA+1−CosecA

CotA+CosecA−(Cosec

2

A−Cot

2

A)

=\frac{(CotA + CosecA )-(CosecA + CotA )(CosecA - CotA ) }{CotA + 1 - CosecA}=

CotA+1−CosecA

(CotA+CosecA)−(CosecA+CotA)(CosecA−CotA)

= \frac{(CotA + CosecA )(CotA + 1 - CosecA)}{(CotA + 1 - CosecA)}=

(CotA+1−CosecA)

(CotA+CosecA)(CotA+1−CosecA)

= (CotA + CosecA)=(CotA+CosecA)

Similar questions