Math, asked by Aksheesati, 1 year ago

Show that cube of any positive integer is of the form 4 m. 4 m + 1 or 4 m+ 3. for some integer m.​

Answers

Answered by Labdha
2

Answer:

Step-by-step explanation:

Let a be an arbitary constant. Then by Euclid's division algorithm corresponding to the positive integers a and 4, there exists non negative integers q and r such that,

                                         a = 4q+r where 0 ≤ r < 4

Hence, r = 0,1,2,3

Now, a³ = (4q + r)³

= 64q³+48q²r+12qr²+r³

Case 1

r = 0

64q³ = 4(16q³) = 4m, where 16q³ = m

Case 2

r = 1

= 64q³+48q²+12q+1

= 4(16q³+12q²+3q)+1

= 4m+1, where (16q³+12q²+3q) = m

Case 3

r=2

= 64q³+96q²+48q+8

= 4(16q³+24q²+12q+2)

= 4m, where (16q³+24q²+12q+2) = m

Case 4

r = 3

= 64q³+144q²+108q+27

= 64q³+144q²+108q+24+3

= = 4(16q³+36q²+27q+6)+3

= 4m+3, where (16q³+36q²+27q+6) = m

Hence, cube of any positive integer is of the form 4 m. 4 m + 1 or 4 m+ 3. for some integer m.​ [Proved]


Aksheesati: thx
Answered by Anonymous
3

Step-by-step explanation:

Let 'a' be any positive integer and b = 4.

Using Euclid Division Lemma,

a = bq + r [ 0 ≤ r < b ]

⇒ a = 3q + r [ 0 ≤ r < 4 ]

Now, possible value of r :

r = 0, r = 1, r = 2, r = 3

CASE 1:

If we take, r = 0

⇒ a = 4q + 0

⇒ a = 4q

On cubing both sides,

⇒ a³ = (4q)³

⇒ a³ = 4 (16q³)

⇒ a³ = 9m [16q³ = m as integer]

CASE 2:

If we take, r = 1

⇒ a = 4q + 1

On cubing both sides ;

⇒ a³ = (4q + 1)³

⇒ a³ = 64q³ + 1³ + 3 * 4q * 1 ( 4q + 1 )

⇒ a³ = 64q³ + 1 + 48q² + 12q

⇒ a³ = 4 ( 16q³ + 12q² + 3q ) + 1

⇒ a³ = 4m + 1 [ Take m as some integer ]

CASE 3:

If we take r = 2,

⇒ a = 4q + 2

On cubing both sides ;

⇒ a³ = (4q + 2)³

⇒ a³ = 64q³ + 2³ + 3 * 4q * 2 ( 4q + 2 )

⇒ a³ = 64q³ + 8 + 96q² + 48q

⇒ a³ = 4 ( 16q³ + 2 + 24q² + 12q )

⇒ a³ = 4m [Take m as some integer]

CASE 4 :

If we take, r = 3

⇒ a = 4q + 3

On cubing both the sides;

⇒ a³ = (4q + 3)³

⇒ a³ = 64q³ + 27 + 3 * 4q * 3 (4q + 3)

⇒ a³ = 64q³ + 24 + 3 + 144q² + 108q

⇒ a³ = 4 (16q³ + 36q² + 27q + 6) + 3

⇒ a³ = 4m + 3 [Take m as some integer]

Hence, the cube of any positive integer is in the form of 4m, 4m+1 or 4m+3.

__________________

Identity used ;

∵ ( a + b )³ = a³ + b³ + 3ab ( a + b ) .

Hence, it is solved.

Similar questions