Math, asked by lorengray, 1 year ago

show that cube of any positive integer is of the form 6q +r for some integer q (r = 1,2,3,4,5)
please show for r=2,3,4
thankyou
please be bit fast !

Answers

Answered by iitian2020
474
Hello.
6q + r is a positive integer, where q is an integer and r = 0, 1, 2, 3, 4, 5 
Then, the positive integers are of the form 6q, 6q+1, 6q+2, 6q+3, 6q+4 and 6q+5. 
Taking cube of each term, we have, 
(6q)3 = 216 q3 = 6(36q)3 + 0 
= 6m + 0, where m is an integer 

(6q+1)3 = 216q3 + 108q2 + 18q + 1 
= 6(36q3 + 18q2 + 3q) + 1 
= 6m + 1, where m is an integer 

(6q+2)3 = 216q3 + 216q2 + 72q + 8 
= 6(36q3 + 36q2 + 12q + 1) +2 
= 6m + 2, where m is an integer 

(6q+3)3 = 216q3 + 324q2 + 162q + 27 
= 6(36q3 + 54q2 + 27q + 4) + 3 
= 6m + 3, where m is an integer 

(6q+4)3 = 216q3 + 432q2 + 288q + 64 
= 6(36q3 + 72q2 + 48q + 10) + 4 
= 6m + 4, where m is an integer 

(6q+5)3 = 216q3 + 540q2 + 450q + 125 
= 6(36q3 + 90q2 + 75q + 20) + 5 
= 6m + 5, where m is an integer 

Hence, the cube of a positive integer of the form 6q + r, q is an integer and r = 0, 1, 2, 3, 4, 5 is also of the form 6m + r.
Hope it helps.
Answered by sojanplazar
18

Answer:

Euclid's division algorithm,  

a=6q+r    

where a q and r are non-negative integers 0≤r<6 i.e., r=0,1,2,3,4,5.

Cubing (i) both sides , we get  

(a)  

3

=(6q+r)  

3

 

⇒a  

3

=(6q)  

3

+(r)  

3

+3(6q)  

2

(r)+3(6q)(r)  

2

 

⇒a  

3

=6  

3

q  

3

+r  

3

+3(6)  

2

q  

2

r+6×3qr  

2

 

⇒a  

3

=6[36q  

3

+18q  

2

r+3qr  

2

]+r  

3

  ....(ii)  

When r=0

a  

3

=6[36q  

3

+18q  

2

×0+3q0  

2

]+0  

3

  [From (ii)]  

⇒a  

3

=6[36q  

3

]  

⇒a  

3

=6m is perfect cube for some integer m such that m=36q  

2

 

When r=1

a  

3

=6[36q  

3

+18q  

2

×1+3q1  

2

]+1  

3

 

⇒a  

3

=6[36q  

3

+18q  

2

×1+3q]+1  

⇒a  

3

=6m+1 is perfect cube for some integer m such that m=(36q  

2

+18q  

2

+3q)  

When r=2

a  

3

=6[36q  

3

+18q  

2

×2+3q×2  

2

]+2  

3

  [From(ii)]  

⇒a  

3

=6[36q  

3

+36q  

2

+12q]+6+2  

⇒a  

3

=6[36q  

3

+36q  

2

+12q+1]+2  

⇒a  

3

=6m+2 is perfect cube for some integer m such that m=36q  

3

+36q  

2

+12q+1  

When r=3

a  

3

=6[36q  

3

+18q  

2

×3+3q×3  

2

]+3  

3

  [From(ii)]  

⇒a  

3

=6[36q  

3

+54q  

2

+27q]+24+3  

⇒a  

3

=6[36q  

3

+54q  

2

+27q+4]+3  

⇒a  

3

=6m+3  

So , (6m+3) is perfect cube for some integer m such that m=36q  

2

+54q  

2

+27q+4  

When r=4

a  

3

=6[36q  

3

+18q  

2

(4)+3q4  

2

]+4  

3

   [From(ii)]  

⇒a  

3

=6[36q  

3

+72q  

2

+48q]+60+4  

⇒a  

3

=6[36q  

3

+72q  

2

+48q+10]+4

⇒a  

3

=6m+4  

So , (6m+4) is perfect cube for some integer m such that m=36q  

3

+72q  

2

+48q+10  

When r=5  

a  

3

=6[36q  

3

+18q  

2

(5)+3q(5)  

2

]+(5)  

3

    [From(ii)]  

⇒a  

3

=6[36q  

3

+90q  

2

+75q]+120+5  

⇒a  

3

=6[36q  

3

+90q  

2

75q+20]+5  

⇒a  

3

=6m+5  

So, ,(6m+5) is perfect cube for some integer of m=36q  

3

+90q  

2

+75q+20  

Hence , cubes of positive integers of the form (6q+r) is also of the form (6m+r) where m is a specified integer and r=0,1,2,3,4,5tep explanation:

Similar questions