Math, asked by uhhx, 11 months ago

show that each angle in an equilateral triangle is equal to 60° each

Answers

Answered by sethrollins13
28

Given :

  • AB=BC=AC

To Prove :

  • ∠A=∠B=∠C

Solution :

Let an equilateral triangle be ABC.

Now :

\longmapsto\tt{AB=BC}

\longmapsto\tt{\angle{A}=\angle{C}(Angles\:opp.\:to\:equal\:sides---(1)}

\longmapsto\tt{BC=AC}

\longmapsto\tt{\angle{A}=\angle{B}---(2)}

By Equation 1 and 2 :

\longmapsto\tt{\angle{A}+\angle{B}+\angle{C}=180\degree(Angle\:Sum\:Property}

\longmapsto\tt{\angle{A}+\angle{A}+\angle{A}=180\degree}

\longmapsto\tt{3\angle{A}=180\degree}

\longmapsto\tt{\angle{A}=\cancel\dfrac{180}{3}}

\longmapsto\tt\bold{\angle{A}=60\degree}

Therefore :

\longmapsto\tt\bold{\angle{A}=60\degree}

\longmapsto\tt\bold{\angle{B}=60\degree}

\longmapsto\tt\bold{\angle{C}=60\degree}

Attachments:
Similar questions