Math, asked by himanshukumar9249, 10 months ago

Show that equation of the line passing through (acos^3 theeta,asin^3theeta) and perpendicular to the line x sec theeta + ycosec theeta = a is x cos theeta -y sin theeta = a cos2 theeta

Answers

Answered by jitendra420156
24

xcos\theta - y sin \theta = a cos2\theta

Step-by-step explanation:

Given equation of line is

xsec\theta +ycosec\theta = a

y=\frac{a}{cosec\theta }- \frac{xsec\theta }{cosec\theta }

Therefore the slope of the line is(m_{1} ) =- \frac{sec\theta }{cosec\theta }

The slope of the line which is perpendicular to the given line is =\frac{-1}{m_{1} }

                                                                                                      = \frac{cosec\theta }{sec\theta }

                                                                                                      = \frac{cos\theta }{sin\theta }

Therefore the equation of the straight line which passes through the point (acos^3\theta , asin^3\theta) and  slope is = \frac{cos\theta }{sin\theta } is

(y-asin^3\theta)= \frac{cos\theta }{sin\theta } (x-acos^3\theta)

y sin \theta -asin\theta sin^3 \theta = x cos\theta - a cos\theta  cos^3 \theta

xcos\theta - y sin \theta = a cos^4\theta -asin^4\theta

xcos\theta - y sin \theta = a(cos^2\theta +sin^2\theta) (cos^2\theta -sin^2\theta)

xcos\theta - y sin \theta = a cos2\theta(proved)

Answered by Anonymous
19

AnswEr:

The equation of a line perpendicular to the line x sec ∅ + y cos ∅ = a is

 \sf \: x \: cosec \:  \theta - y \: sec \: \theta +  \lambda = 0 \: ( \lambda \: is \:  a \: constant) \\ -  - -(1.)

The line passing through (a cos³ ∅, a sin³ ∅).

 \therefore \tt \: a \: cos {}^{3} \:  \theta \: cosec \:  \theta - a \: sin {}^{3}   \theta \: sec \: \theta +  \lambda = 0 \\  \\  \implies \tt \lambda = a( {sin}^{3}  \: \theta \: sec \: \theta -  {cos}^{3}  \: \theta \: cosec \: \theta

_______________________

Putting the value of \lambda in (1), we get

 \implies \sf \frac{x}{sin \: \theta}  -  \frac{y}{cos \: \theta}  + a( \frac{ {sin}^{3}  \: \theta}{cos \: \theta}  -  \frac{ {cos}^{3} \: \theta }{sin \:\theta } ) = 0 \\  \\  \sf \implies \: x \: cos \: \theta - y \: sin \: \theta + a( {sin}^{4}  \: \theta -  {cos}^{4}  \: \theta) = 0 \\  \\  \implies \sf \: x \: cos \: \theta - y \: sin \: \theta + a( {sin}^{2}  \: \theta +  {cos}^{2}  \: \theta) \\  \sf( {sin}^{2}  \: \theta -  {cos}^{2}  \: \theta) = 0 \\  \\  \implies \sf \: x \: cos \: \theta - y \: sin \: \theta - a( {cos}^{2}  \: \theta -  {sin}^{2}  \: \theta) = 0 \\  \\  \sf \implies \: x \: cos \: \theta - y \: sin \: \theta - a \: cos \: 2 \: \theta = 0 \\  \\  \sf \implies \: x \: cos \: \theta - y \: sin \: \theta = a \: cos \: 2 \: \theta \:

Similar questions