show that every even positive integer is of the form 5m+1 or 5m+3 for some odd integer m
Answers
Answered by
18
Let x be any positive integerThen x = 5q or x = 5q+1 or x = 5q+4 for integer x.If x = 5q, x2 = (5q)2 = 25q2 = 5(5q2) = 5n (where n = 5q2 )If x = 5q+1, x2 = (5q+1)2 = 25q2+10q+1 = 5(5q2+2q)+1 = 5n+1 (where n = 5q2+2q )If x = 5q+4, x2 = (5q+4)2 = 25q2+40q+16 = 5(5q2 + 8q + 3)+ 1 = 5n+1 (where n = 5q2+8q+3 )∴in each of three cases x2 is either of the form 5q or 5q+1 or 5q+4 and for integer q.
Answered by
26
hey
here is answer
let a be any positive integer
then
b=5
0≤r<b
0≤r<5
r=0,1,2, 3,4
case 1.
r=0
a=bq+r
5q+0
(5q)^2
25q^2
5(5q^2)
let 5q^2 be m
=5m
case 2.
r=1
a=bq+r
(5q+1)^2
(5q^2)+2*5q*1+1^2
25q^2+10q+1
5(5q^2+2q)+1
let 5q^2+2q be m
= 5m+1
case 3.
r=2
(5q+2)^2
25q^2+20q+4
5(5q^2+4q)+4
let 5q^2+4q be m
= 5m+4
case4.
r=3
(5q+3)^2
25q^2+30q+9
25q^2+30q+5+4
5(5q^2+6q+1)+4
let the 5q^2+6q+1 be m
= 5m+4
case 5.
r=4
(5q+4)^2
25q^2+40q+16
25q^2+40q+15+1
5(5q^2+8q+3)+1
let 5q^2+8q+3 be m
5m+1
from above it is proved.
hope it helps
thanks
here is answer
let a be any positive integer
then
b=5
0≤r<b
0≤r<5
r=0,1,2, 3,4
case 1.
r=0
a=bq+r
5q+0
(5q)^2
25q^2
5(5q^2)
let 5q^2 be m
=5m
case 2.
r=1
a=bq+r
(5q+1)^2
(5q^2)+2*5q*1+1^2
25q^2+10q+1
5(5q^2+2q)+1
let 5q^2+2q be m
= 5m+1
case 3.
r=2
(5q+2)^2
25q^2+20q+4
5(5q^2+4q)+4
let 5q^2+4q be m
= 5m+4
case4.
r=3
(5q+3)^2
25q^2+30q+9
25q^2+30q+5+4
5(5q^2+6q+1)+4
let the 5q^2+6q+1 be m
= 5m+4
case 5.
r=4
(5q+4)^2
25q^2+40q+16
25q^2+40q+15+1
5(5q^2+8q+3)+1
let 5q^2+8q+3 be m
5m+1
from above it is proved.
hope it helps
thanks
Similar questions