Math, asked by creativemathstamil, 21 days ago

Show that if t" = ½(t + t') where t and t' are both most efficient estimators with variance v, then var(t'') = ½v(1 + p).

Answers

Answered by csrivigneshmail
0

Answer:

X1 , X2 and X3 is a random sample of size 3 from a population with mean mu and

variance sigma^2. T1, T2 and T3 are the estimators to estimate mu, and are given by

T1 = X1 + X2 - X3; T2 = 2X1 + 3X3 - 4X2 and T3 = 1/3(lambda X1 + X2 + X3).

(i) Are T 1 and T2 unbiased ? Give reason.

(ii) Find the value of A, such that T3 is

unbiased.

(iii) Which is the best estimator ? State

giving reasons.

Expert's answer

(i) \text{We will show that } T_1 \text{ and } T_2 \text{ are unbiased estimators}\\ \text{of the parameter } \mu \text{ using the definition of an unbiased estimator}.\\ E(T_1)=E(X_1+X_2-X_3)=\mu+\mu-\mu=\mu.\\ E(T_2)=E(2X_1+3X_3-4X_2)=2\mu+3\mu-4\mu=\mu.\\ \text{So } T_1 \text{ and } T_2 \text{ are unbiased estimators of } \mu.\\ (ii) E(T_3)=\mu.\\ \frac{1}{3}(\lambda\mu+\mu+\mu)=\mu.\\ \text{Then }\lambda=1.\\ (iii) D(T_1)=D(X_1+X_2-X_3)=\sigma^2+\sigma^2-\sigma^2=\sigma^2.\\ D(T_2)=D(2X_1+3X_3-4X_2)=2\sigma^2+3\sigma^2-4\sigma^2=\sigma^2.\\ D(T_3)=D\big(\frac{1}{3}(X_1+X_2+X_3)\big)=\frac{1}{9}(\sigma^2+\sigma^2+\sigma^2)=\frac{1}{3}\sigma^2.\\ \text{Since } T_3 \text{ has the lowest variance then } T_3\\ \text{is the best estimator of } \mu.(i)We will show that T

1

and T

2

are unbiased estimators

of the parameter μ using the definition of an unbiased estimator.

E(T

1

)=E(X

1

+X

2

−X

3

)=μ+μ−μ=μ.

E(T

2

)=E(2X

1

+3X

3

−4X

2

)=2μ+3μ−4μ=μ.

So T

1

and T

2

are unbiased estimators of μ.

(ii)E(T

3

)=μ.

3

1

(λμ+μ+μ)=μ.

Then λ=1.

(iii)D(T

1

)=D(X

1

+X

2

−X

3

)=σ

2

2

−σ

2

2

.

D(T

2

)=D(2X

1

+3X

3

−4X

2

)=2σ

2

+3σ

2

−4σ

2

2

.

D(T

3

)=D(

3

1

(X

1

+X

2

+X

3

))=

9

1

2

2

2

)=

3

1

σ

2

.

Since T

3

has the lowest variance then T

3

is the best estimator of μ.

Similar questions