Computer Science, asked by flngbst, 4 months ago

Show that in a connected planner linear graph with 6
vertices and 12 edges, each of the regions is bounded by

3 edges.

Answers

Answered by HTML99
1

&lt;style style="text/css"&gt;</p><p>.bounce {</p><p> height: 50px;	</p><p> overflow: hidden;</p><p> position: relative;</p><p> background: yellow;</p><p> color: orange;</p><p> border: 1px solid orange;</p><p>}</p><p>.bounce p {</p><p> position: absolute;</p><p> width: 100%;</p><p> height: 100%;</p><p> margin: 0;</p><p> line-height: 50px;</p><p> text-align: center;</p><p> /* Starting position */</p><p> -moz-transform:translateX(50%);</p><p> -webkit-transform:translateX(50%);	</p><p> transform:translateX(50%);</p><p> /* Apply animation to this element */	</p><p> -moz-animation: bouncing-text 5s linear infinite alternate;</p><p> -webkit-animation: bouncing-text 5s linear infinite alternate;</p><p> animation: bouncing-text 5s linear infinite alternate;</p><p>}</p><p>/* Move it (define the animation) */</p><p>@-moz-keyframes bouncing-text {</p><p> 0%   { -moz-transform: translateX(50%); }</p><p> 100% { -moz-transform: translateX(-50%); }</p><p>}</p><p>@-webkit-keyframes bouncing-text {</p><p> 0%   { -webkit-transform: translateX(50%); }</p><p> 100% { -webkit-transform: translateX(-50%); }</p><p>}</p><p>@keyframes bouncing-text {</p><p> 0%   { </p><p> -moz-transform: translateX(50%); /* Browser bug fix */</p><p> -webkit-transform: translateX(50%); /* Browser bug fix */</p><p> transform: translateX(50%); 		</p><p> }</p><p> 100% { </p><p> -moz-transform: translateX(-50%); /* Browser bug fix */</p><p> -webkit-transform: translateX(-50%); /* Browser bug fix */</p><p> transform: translateX(-50%); </p><p> }</p><p>}</p><p>&lt;/style&gt;</p><p></p><p>&lt;div class="bounce"&gt;</p><p>&lt;p&gt;HTML 99. &lt;/p&gt;</p><p>&lt;/div&gt;

Answered by tanu6675
0

Answer:

You should have learned about Euler's formula

p−q+f=2 p - vertices q - edges f - faces

You can use that result to show each face has 3 edges, look at 7.4.2Since G is planar we can use Euler's Identity, n−m+r=2, where n=6 and m=12. Thus 6−12+r=2 implies that r=8. By The First Theorem of Graph Theory the sum of all the degrees in G is 2m=2(12)=24. Since the number of regions is r=8 we know that each region is bounded by 24/8=3 edges.

If G is a connected plane graph with at least three edges, then the boundary of every region of G has at least three edges. In this particular problem it turns out that the boundary of every region of G has three edges.

Similar questions