Physics, asked by weebphantom, 1 month ago

Show that Irms= 0.707 I of an AC where symbols have there usual meaning​

Answers

Answered by nirman95
6

Proof:

 \therefore \: I_{rms} =  \sqrt{ \dfrac{  \displaystyle\int \: I_{ac} \: dt}{  \displaystyle\int \: dt} }

 \implies \: I_{rms} =  \sqrt{ \dfrac{  \displaystyle\int_{0}^{T} \: { \bigg \{I \sin( \omega t) \bigg \}}^{2}   \: dt}{  \displaystyle\int_{0}^{T} \: dt} }

 \implies \: I_{rms} = I  \times  \sqrt{ \dfrac{  \displaystyle\int_{0}^{T} \: {\sin}^{2} ( \omega t)    \: dt}{  \displaystyle\int_{0}^{T} \: dt} }

 \implies \: I_{rms} = I  \times  \sqrt{ \dfrac{  \displaystyle\int_{0}^{T} \: {\sin}^{2} ( \omega t)    \: dt}{T}}

 \implies \: I_{rms} = I  \times  \sqrt{ \dfrac{  \displaystyle\int_{0}^{T} \: 1 -  \cos(2 \omega t)     \: dt}{2T}}

 \implies \: I_{rms} = I  \times  \sqrt{ \dfrac{  \displaystyle T   -   \bigg \{\sin(2 \omega t) \bigg \}_{0}^{T}   \: dt}{2T}}

 \implies \: I_{rms} = I  \times  \sqrt{ \dfrac{  \displaystyle T   -   \bigg \{\sin(2 \times  \frac{2\pi}{T}   \times t) \bigg \}_{0}^{T}}{2T}}

 \implies \: I_{rms} = I  \times  \sqrt{ \dfrac{  \displaystyle T   -   \bigg \{\sin(\frac{4\pi}{T}   \times t) \bigg \}_{0}^{T}   }{2T}}

 \implies \: I_{rms} = I  \times  \sqrt{ \dfrac{  \displaystyle T   -   \bigg \{\sin(4\pi) - 0 \bigg \}}{2T}}

 \implies \: I_{rms} = I  \times  \sqrt{ \dfrac{T}{2T}}

 \implies \: I_{rms} = I  \times  \sqrt{ \dfrac{1}{2}}

 \implies \: I_{rms} =0.707( I )

Similar questions