Math, asked by chintulalalala5613, 10 months ago

Show that one and only one out of n, n + 2 or n + 4 is divisible by 3, where n is any
positive integer
3p, 3pt', 3p+2
D, 142, nty​

Answers

Answered by garima01
5

Answer:

Question :-

→ Prove that one and only one out of n, n + 2 and n + 4 is divisible by 3, where n is any positive integer .

▶ Step-by-step explanation :-

Euclid's division Lemma any natural number can be written as: .

where r = 0, 1, 2,. and q is the quotient.

∵ Thus any number is in the form of 3q , 3q+1 or 3q+2.

→ Case I: if n =3q

⇒n = 3q = 3(q) is divisible by 3,

⇒ n + 2 = 3q + 2 is not divisible by 3.

⇒ n + 4 = 3q + 4 = 3(q + 1) + 1 is not divisible by 3.

→ Case II: if n =3q + 1

⇒ n = 3q + 1 is not divisible by 3.

⇒ n + 2 = 3q + 1 + 2 = 3q + 3 = 3(q + 1) is divisible by 3.

⇒ n + 4 = 3q + 1 + 4 = 3q + 5 = 3(q + 1) + 2 is not divisible by 3.

→ Case III: if n = 3q + 2

⇒ n =3q + 2 is not divisible by 3.

⇒ n + 2 = 3q + 2 + 2 = 3q + 4 = 3(q + 1) + 1 is not divisible by 3.

⇒ n + 4 = 3q + 2 + 4 = 3q + 6 = 3(q + 2) is divisible by 3.

Thus one and only one out of n , n+2, n+4 is divisible by 3.

Hence, it is solved

PLZZ MARK ME AS BRAINLIST!! ✌✌✌

Similar questions