Math, asked by rehankadri280, 1 year ago

show that or prove that question attached ​

Attachments:

Answers

Answered by Anonymous
5

Step-by-step explanation:

To Prove : {\sf{\ \ {\dfrac{tan^3 \theta - 1}{tan \theta - 1}} = sec^2 \theta + tan \theta}}

L.H.S. = {\sf{\ \ {\dfrac{tan^3 \theta - 1}{tan \theta - 1}}}}

{\sf{ {\dfrac{ (tan \theta)^3 - (1)^3}{tan \theta - 1}}}}

{\boxed{\sf{\red{Identity \ : \ a^3 - b^3 = (a - b)(a^2 + b^2 + ab)}}}}

{\sf{\red{Here, \ a = tan \theta , \ b = 1}}}

{\sf{ {\dfrac{(tan \theta - 1)[ (tan \theta)^2 + (1)^2 + (tan \theta)(1)]}{tan \theta - 1}}}}

{\sf{ {\dfrac{{\cancel{(tan \theta - 1)}}[ (tan \theta)^2 + (1)^2 + (tan \theta)(1)]}{{\cancel{tan \theta - 1}}}}}}

{\sf{tan^2 \theta + 1 + tan \theta}}

{\boxed{\sf{\red{Identity \ : \ tan^2 \theta + 1 = sec^2 \theta}}}}

{\sf{sec^2 \theta + tan \theta}}

= R.H.S.

Hence, proved !!

{\rule{200}{2}}

Similar Identities which are frequently used :

• sin²θ + cos²θ = 1

• cot²θ + 1 = cosec²θ

Similar questions