Math, asked by sanj2, 1 year ago

show that (p+1/q)^m×(p-1/q)^n upon (q+1/p)^m ×(q-1/p)^n=(p/q)^m+n

Attachments:

Answers

Answered by astitvastitva
115
Using Left Hand Side

LHS =  \frac{(p + \frac{1}{q}) ^{m}.(p - \frac{1}{q}) ^{n}}{(p + \frac{1}{p}) ^{m}.(p - \frac{1}{p}) ^{n}}

 \frac{\frac{(pq + 1) ^{m}}{q^m}.\frac{(pq - 1) ^{n}}{q^n}}{\frac{(pq + 1) ^{m}}{p^m}.\frac{(pq - 1) ^{n}}{p^n}}

 \frac{(pq + 1)^m.(pq - 1)^n}{q^m.q^n}  ×  \frac{p^m.p^n}{(pq + 1)^m.(pq - 1)^n}

 \frac{p^m.p^n}{q^m.q^n}

 \frac{p^{m+n} }{q^{m+n}}

 (\frac{p}{q})^{m+n}
Answered by guptasingh4564
35

Hence Proved.

Step-by-step explanation:

Given,

\frac{(p + \frac{1}{q}) ^{m}.(p - \frac{1}{q}) ^{n}}{(p + \frac{1}{p}) ^{m}.(p - \frac{1}{p}) ^{n}} = (\frac{p}{q})^{m+n}

LHS= \frac{(p + \frac{1}{q}) ^{m}.(p - \frac{1}{q}) ^{n}}{(p + \frac{1}{p}) ^{m}.(p - \frac{1}{p}) ^{n}}

= \frac{\frac{(pq + 1) ^{m}}{q^m}.\frac{(pq - 1) ^{n}}{q^n}}{\frac{(pq + 1) ^{m}}{p^m}.\frac{(pq - 1) ^{n}}{p^n}}

= \frac{(pq + 1)^m.(pq - 1)^n}{q^m.q^n}\times  \frac{p^m.p^n}{(pq + 1)^m.(pq - 1)^n}

=  \frac{p^m.p^n}{q^m.q^n}

=  \frac{p^{m+n} }{q^{m+n}}

=  (\frac{p}{q})^{m+n}=RHS

Hence Proved.

Similar questions