show, that P(a,a),Q(-a,-a),R(-a√3,-a√3) form an equilateral triangle
Answers
Answered by
3
Given points are A(a, a), B(-a,-a) and C(-a√3 , a√3)
Now, AB = √{(a + a)^2 +(a + a)^2 } = √{(2a)^2 + (2a)^2 } = √{4a^2 + 4a^2 } = √{8a^2 } = 2a√2
BC = √{(-a + a√3)^2 +(-a - a√3)^2 }
= √{a^2 + 3a^2 - 2a^2 *√3 + a^2 + 3a^2 + 2a^2 *√3 }
= √{8a^2 }
= 2a√2
CA = √{(a + a√3)^2 +(-a - a√3)^2 }
= √{a^2 + 3a^2 + 2a^2 *√3 + a^2 + 3a^2 - 2a^2 *√3 }
= √{8a^2 }
= 2a√2
Since, AB = BC = CA = 2a√2
So, the triangle ABC is an equilateral triangle.
Now, AB = √{(a + a)^2 +(a + a)^2 } = √{(2a)^2 + (2a)^2 } = √{4a^2 + 4a^2 } = √{8a^2 } = 2a√2
BC = √{(-a + a√3)^2 +(-a - a√3)^2 }
= √{a^2 + 3a^2 - 2a^2 *√3 + a^2 + 3a^2 + 2a^2 *√3 }
= √{8a^2 }
= 2a√2
CA = √{(a + a√3)^2 +(-a - a√3)^2 }
= √{a^2 + 3a^2 + 2a^2 *√3 + a^2 + 3a^2 - 2a^2 *√3 }
= √{8a^2 }
= 2a√2
Since, AB = BC = CA = 2a√2
So, the triangle ABC is an equilateral triangle.
Similar questions