Physics, asked by Anonymous, 11 months ago

show that projectile motion is parabolic motion​

Answers

Answered by nirman95
5

Answer:

Given:

An object is thrown at an angle θ from the horizontal.

To find:

Equation of trajectory

Concept:

We will divide the projectile motion into 2 different linear motion in x and y axes.

Calculation:

Time = T

Velocity in x axis = v cos(θ)

Velocity in y axis = v sin(θ)

Distance in x Axis

=x= [v cos(θ)] × T ....(i)

Distance in y Axis

y = v sin(θ) × T - ½gT² ...........(ii)

Putting value of T in eq.(ii)

y = x × v sin(θ)/ v cos(θ) - ½g{x/vcos(θ)}²

y = x tan(θ) - gx²/2u²cos²(θ).

The derived equation is similar to a parabolic equation

y = ax - bx².

So the trajectory of a projectile is a Parabola.


Anonymous: nice! :)
nirman95: Thank you!!
Answered by Anonymous
2

Expression Is Given Below;-

use \: the \: equation \\ s = ut +  \frac{1}{2} at {}^{2}  \\  \\ appling \: it \: on \: x \: axis \\  =  > x = (u \: \cos \alpha ) t +  \frac{1}{2} (0)t {}^{2}  \\  =  > x = u \cos\alpha  \times t \\  =  > t =  \frac{x}{u \: cos \:  \alpha }......(1)  \\  \\ applying \: on \: y \: axis \\  =  > y = (u \: sin \:  \alpha )t +  \frac{1}{2} ( - g)t {}^{2}  \\  =  > y = u \: sin \:  \alpha  \times t  -  \frac{1}{2} gt {}^{2}  \\   \:  \:  \:  \:  \:  \: using \: equation......(1) \\  =  > y = u \: sin \:  \alpha  \times  \frac{x}{u \: cos \:  \alpha }  -  \frac{1}{2}  \times g \times ( \frac{x}{u \: cos \:  \alpha } ) {}^{2}  \\  =  > y = x \tan \alpha  -  \frac{1}{2}  \frac{g {x}^{2} }{ {u}^{2}  { \cos \alpha  }^{2} }  \\  \\  \\ comparing \: with \: parabola \: equation \:  \\ y = 4a {x}^{2}  \\  \\  \\ hence \: the \: path \: of \: projectile \: is \: parabola

Hope It Helps.....

Similar questions