Math, asked by virasanbarasu, 11 months ago

show that root 2 + root 3 is irrational​

Answers

Answered by gourirupa
10

Answer:

Step-by-step explanation: Proof by contradiction,

Suppose √2 + √3 is rational, then

            √2 + √3 is of the form of a/b where a and b are integers and b ≠ 0.

Square both sides , then- (√2 +  √3)² = a²/b²

                                          ⇒ (√2)² + 2(√2)(√3) + (√3)² = a²/b²

                                          ⇒ 2 + 2√6 + 3 = a²/b²

                                          ⇒ 2√6 = a²/b² - 5

                                          ⇒ 2√6 = a² - 5b²/b²

                                          ⇒ √6 = a² - 5b²/ 2b²

The RHS is rational when a and b are integers , so the LHS , that is √6 also has to be rational , but it is not.

So √2 + √3 is irrational .

Answered by Anonymous
31

• Let us assume that \sqrt{2}  \:  +  \:  \sqrt{3} is a rational number.

Now,

\implies \:  \sqrt{2}  \:  +  \:  \sqrt{3}  \:  =  \:  \dfrac{a}{b}

Here, a and b are co-prime numbers.

Squaring on both sides

\implies \:  (\sqrt{2}  \:  +  \:  \sqrt{3}) ^{2}   \:  =  \:  \bigg (\dfrac{a}{b}  \bigg)^{2}

(a + b)² = a² + b² + 2ab

So,

\implies \:  (\sqrt{2})^{2}   \:  +  \:  (\sqrt{3}) ^{2}  \:  +  \: 2 (\sqrt{2}) (\sqrt{3} )   \:  =  \:  \bigg(\dfrac{a^{2} }{ {b}^{2} }  \bigg)

\implies \:  2  \:  +  \:  3  \:  +  \: 2 \sqrt{6} \:  =  \:  \bigg(\dfrac{a^{2} }{ {b}^{2} }  \bigg)

\implies \:  5\:  +  \: 2 \sqrt{6} \:  =  \:  \bigg(\dfrac{a^{2} }{ {b}^{2} }  \bigg)

\implies \:  2 \sqrt{6} \:  =  \:  \bigg(\dfrac{a^{2} }{ {b}^{2} }  \:  -  \: 5 \bigg)

\implies \:  2 \sqrt{6} \:  =  \:  \bigg(\dfrac{a^{2}  \:  -  \: 5 {b}^{2} }{ {b}^{2} }  \bigg)

\implies \:  \sqrt{6} \:  =  \:  \bigg(\dfrac{a^{2}  \:  -  \: 5 {b}^{2} }{2 {b}^{2} }  \bigg)

Here.. \bigg(\dfrac{a^{2}  \:  -  \: 5 {b}^{2} }{2 {b}^{2} }  \bigg) is a rational number.

And \bigg(\dfrac{a^{2}  \:  -  \: 5 {b}^{2} }{2 {b}^{2} }  \bigg) is equl to \sqrt{6}

This means that, \sqrt{6} is also a rational number.

But we know that \sqrt{6} is an irrational number.

This contradicts that our assumption is wrong.

\sqrt{2}  \:  +  \:  \sqrt{3} is an irrational number.

Similar questions