Math, asked by ayushipalekar, 2 months ago

show that (root 3/2 + i/2)^3 is =i

guys plz help its urgent ...plz
and do remember it is whole cube not multiplied by 3....
help...​

Attachments:

Answers

Answered by MaheswariS
5

\underline{\textbf{To prove:}}

\mathsf{\left(\dfrac{\sqrt{3}}{2}+i\,\dfrac{1}{2}\right)^3=i}

\underline{\textbf{Solution:}}

\underline{\textbf{Demovire's theorem:}}

\boxed{\mathsf{(cos\,\theta+i\,sin\theta)^n=cos\,n\theta+i\,sin\,n\theta}}

\mathsf{Consider,}

\mathsf{\left(\dfrac{\sqrt{3}}{2}+i\,\dfrac{1}{2}\right)^3}

\textsf{This can be written as,}

\mathsf{=\left(cos\dfrac{\pi}{6}+i\,sin\dfrac{\pi}{6}\right)^3}

\textsf{Using Demovire's theorem, we get}

\mathsf{=cos\dfrac{3\pi}{6}+i\,sin\dfrac{3\pi}{6}}

\mathsf{=cos\dfrac{\pi}{2}+i\,sin\dfrac{\pi}{2}}

\mathsf{=0+i\,1}

\mathsf{=i}

\implies\boxed{\mathsf{\left(\dfrac{\sqrt{3}}{2}+i\,\dfrac{1}{2}\right)^3=i}}

Similar questions