show that : [sec theta - tan theta]² =1-sin theta divided by 1+ sin theta
Answers
Answered by
0
Answer:
Step-by-step explanation:
Given, [secθ - tanθ]² = (1 - sinθ) / (1 + sinθ)
L.H.S = [secθ - tanθ]²
⇒ sec²θ + tan²θ - 2secθtanθ
⇒ (1 / cos²θ) + (sin²θ / cos²θ) - (2sinθ / cos²θ)
⇒ (sin²θ - 2sinθ + 1) / cos²θ
⇒ (1 - sinθ)² / (1 - sin²θ)
⇒ [(1 - sinθ)(1 - sinθ)] / [(1 + sinθ)(1 - sinθ)]
⇒ (1 - sinθ) / (1 + sinθ) = R.H.S
Hence, proved
Hope it helps!!
Similar questions