Math, asked by MichWorldCutiestGirl, 6 hours ago

show that


√sec²theta+cosec²theta =tan theta +cot theta​

Don't dare for Spam !​

Answers

Answered by Rohitgahlawat
0

Step-by-step explanation:

We use the following trigonometric identities:

sec

2

θ=tan

2

θ+1 and

cosec

2

θ=cot

2

θ+1

On adding these, we get:

sec

2

θ+cosec

2

θ=tan

2

θ+cot

2

θ+2

⇒sec

2

θ+cosec

2

θ=tan

2

θ+cot

2

θ+2tanθcotθ=(tanθ+cotθ)

2

sec

2

θ+cosec

2

θ

=tanθ+cotθ

Hence Proved.

7206527056 brainly group goin

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Consider LHS

\rm :\longmapsto\: \sqrt{ {sec}^{2} \theta \:   +  \:  {cosec}^{2} \theta }

\rm \:  =  \:  \sqrt{(1 +  {tan}^{2}\theta)  + (1 +  {cot}^{2}\theta) }

\rm \:  =  \:  \sqrt{ {tan}^{2} \theta  +  {cot}^{2}\theta  + 2 }

can be rewritten as

\rm \:  =  \:  \sqrt{ {tan}^{2} \theta  +  {cot}^{2}\theta  + 2 \times 1 }

can be further rewritten as

\rm \:  =  \:  \sqrt{ {tan}^{2} \theta  +  {cot}^{2}\theta  + 2 \times tan\theta  \times \dfrac{1}{tan\theta }  }

\rm \:  =  \:  \sqrt{ {tan}^{2} \theta  +  {cot}^{2}\theta  + 2 \times tan\theta  \times cot\theta}

\rm \:  =  \:  \sqrt{(tan\theta  + cot\theta )^{2} }

\rm \:  =  \: tan\theta  +  cot\theta

Hence,

 \\  \:  \:  \:  \:  \:  \: \purple{\boxed{\tt{  \:  \: \rm \:  \sqrt{ {sec}^{2} \theta  +  {cosec}^{2}\theta }  =  \: tan\theta  +  cot\theta  \:  \: }}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formula Used

\boxed{\tt{  {sec}^{2}x -  {tan}^{2}x = 1}}

\boxed{\tt{  {cosec}^{2}x -  {cot}^{2}x = 1}}

\boxed{\tt{  {x}^{2} +  {y}^{2} + 2xy =  {(x + y)}^{2}}}

\boxed{\tt{ cotx \:  =  \:  \frac{1}{tanx} \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions