show that
√sec²theta+cosec²theta =tan theta +cot theta
Don't dare for Spam !
Answers
Step-by-step explanation:
We use the following trigonometric identities:
sec
2
θ=tan
2
θ+1 and
cosec
2
θ=cot
2
θ+1
On adding these, we get:
sec
2
θ+cosec
2
θ=tan
2
θ+cot
2
θ+2
⇒sec
2
θ+cosec
2
θ=tan
2
θ+cot
2
θ+2tanθcotθ=(tanθ+cotθ)
2
⇒
sec
2
θ+cosec
2
θ
=tanθ+cotθ
Hence Proved.
7206527056 brainly group goin
Consider LHS
can be rewritten as
can be further rewritten as
Hence,
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Formula Used
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Additional Information:-
Relationship between sides and T ratios
sin θ = Opposite Side/Hypotenuse
cos θ = Adjacent Side/Hypotenuse
tan θ = Opposite Side/Adjacent Side
sec θ = Hypotenuse/Adjacent Side
cosec θ = Hypotenuse/Opposite Side
cot θ = Adjacent Side/Opposite Side
Reciprocal Identities
cosec θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ
sin θ = 1/cosec θ
cos θ = 1/sec θ
tan θ = 1/cot θ
Co-function Identities
sin (90°−x) = cos x
cos (90°−x) = sin x
tan (90°−x) = cot x
cot (90°−x) = tan x
sec (90°−x) = cosec x
cosec (90°−x) = sec x
Fundamental Trigonometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
cosec²θ - cot²θ = 1