show that :secA+tanA-1/tanA-secA+1=cosA/1-sinA
Answers
Answered by
6
(secA + tanA - 1) / (tanA - secA + 1) = cosA / 1 - sinA
LHS = (secA + tanA - 1) / (tanA - secA + 1)
[secA + tanA - (sec2A - tan2A)] / (tanA - secA + 1) .....expand 1 as {sec2A - tan2A}
[secA + tanA - {(secA - tanA) (secA + tanA}] / (tanA - secA + 1)
[secA + tanA - (1 - secA + tanA)] / (tanA - secA + 1)
secA + tanA = 1/cosA + sinA/cosA
= 1 + sinA / cosA = > cosA / 1-sinA............hence proved
LHS = (secA + tanA - 1) / (tanA - secA + 1)
[secA + tanA - (sec2A - tan2A)] / (tanA - secA + 1) .....expand 1 as {sec2A - tan2A}
[secA + tanA - {(secA - tanA) (secA + tanA}] / (tanA - secA + 1)
[secA + tanA - (1 - secA + tanA)] / (tanA - secA + 1)
secA + tanA = 1/cosA + sinA/cosA
= 1 + sinA / cosA = > cosA / 1-sinA............hence proved
Similar questions