Show that sin 32 degree.cos 58 degree + cos 32 degree. Sin58degree = 1
Answers
Answered by
11
sin32°.cos58° + cos32°.sin58°
→ sin32°.cos(90-32) + cos32.sin(90-32)
[ sin∅ = cos(90-∅), cos∅=sin(90-∅))
→ sin32°.sin32° + cos32°.cos32°
→ sin²32° + cos²32°
→ 1
[sin²∅+cos²∅=1]
Hence Proved
______________________________
→ sin32°.cos(90-32) + cos32.sin(90-32)
[ sin∅ = cos(90-∅), cos∅=sin(90-∅))
→ sin32°.sin32° + cos32°.cos32°
→ sin²32° + cos²32°
→ 1
[sin²∅+cos²∅=1]
Hence Proved
______________________________
Answered by
5
Hi ,
************************
We know the trigonometric identity
Sin² A + cos² A = 1
******************************
LHS = sin32°cos58° + cos32°sin58°
=Sin32°cos(90-32)+cos32sin(90-58)
=sin32°sin32°+ cos32°cos32°
= sin² 32 + cos² 32°
= 1
= RHS
Or
SinAcosB + cosAsinB = sin( A + B )
Here ,
A = 32° , B = 58°
Sin32°cos58° + cos32°sin58°
= Sin( 32 + 58 )
= Sin90°
= 1
I hope this helps you.
:)
************************
We know the trigonometric identity
Sin² A + cos² A = 1
******************************
LHS = sin32°cos58° + cos32°sin58°
=Sin32°cos(90-32)+cos32sin(90-58)
=sin32°sin32°+ cos32°cos32°
= sin² 32 + cos² 32°
= 1
= RHS
Or
SinAcosB + cosAsinB = sin( A + B )
Here ,
A = 32° , B = 58°
Sin32°cos58° + cos32°sin58°
= Sin( 32 + 58 )
= Sin90°
= 1
I hope this helps you.
:)
Similar questions