Show that Sin^4 π/8 + Sin^4 3π/8 + Sin^4 5π/8 + Sin^4 7π/8 = 3/2.
Answers
Answered by
63
Solution -
sin⁴(π/8) + sin⁴(3π/8) + sin⁴(5π/8) + sin⁴(7π/8)
= [sin²(π/8)]² + [sin²(3π/8)]² + [sin²(5π/8)]² + [sin²(7π/8)]²
= [{1 - cos(π/4)}/2]² + [{1 - cos(3π/4)}/2]² + [{1 - cos(5π/4)}/2]² + [{1 - cos(7π/4)}/2]²
= [{1 - √2/2 }/2]² + [{1 + √2/2 }/2]² + [{1 + √2/2}/2]² + [{1 - √2/2}/2]²
= 2[{1 - √2/2 }/2]² + 2[{1 + √2/2 }/2]²
= 2[{2 - √2}/4]² + 2[{2 + √2}/4]²
= (1/8)(2 - √2)² + (1/8)(2 + √2)²
= (1/8)[(4 - 4√2 + 2) + (4 + 4√2 + 2)]
= 12/8 = 3/2
sin⁴(π/8) + sin⁴(3π/8) + sin⁴(5π/8) + sin⁴(7π/8)
= [sin²(π/8)]² + [sin²(3π/8)]² + [sin²(5π/8)]² + [sin²(7π/8)]²
= [{1 - cos(π/4)}/2]² + [{1 - cos(3π/4)}/2]² + [{1 - cos(5π/4)}/2]² + [{1 - cos(7π/4)}/2]²
= [{1 - √2/2 }/2]² + [{1 + √2/2 }/2]² + [{1 + √2/2}/2]² + [{1 - √2/2}/2]²
= 2[{1 - √2/2 }/2]² + 2[{1 + √2/2 }/2]²
= 2[{2 - √2}/4]² + 2[{2 + √2}/4]²
= (1/8)(2 - √2)² + (1/8)(2 + √2)²
= (1/8)[(4 - 4√2 + 2) + (4 + 4√2 + 2)]
= 12/8 = 3/2
zakir7581p0visq:
mark my answer as brainlest
Answered by
19
Answer:
please like my answer bro
Attachments:
Similar questions