Math, asked by ria4321, 1 year ago

show that sin raised to 4 theta minus Cos raise to 4 theta is equal to 1 - 2 cos square theta​

Answers

Answered by fayazrahman4u
22

Answer:

sin4x - cos4x = (1 - 2cos2x)

Step-by-step explanation:

sin4x - cos4x

= (sin2x)^2 - (cos2x)^2

= (sin2x + cos2x)(sin2x - cos2x)

= 1(sin2x - cos2x)         [Since sin2x + cos2x = 1]

= ((1 - cos2x) - cos2x)   [Since sin2x = 1 - cos2x]

= (1 - 2cos2x)

Thus, proved.

Answered by harendrachoubay
9

\sin^4 \theta-\cos^4 \theta=1-2\cos^2 \theta, proved.

Step-by-step explanation:

To prove that, \sin^4 \theta-\cos^4 \theta=1-2\cos^2 \theta.

L.H.S. =\sin^4 \theta-\cos^4 \theta

=(\sin^2 \theta)^2-(\cos^2 \theta)^2

Using the formula,

a^{2}-b^{2}=(a+b)(a-b)

=(\sin^2 \theta+\cos^2 \theta)(\sin^2 \theta-\cos^2 \theta)

Using trigonometric identity,

\sin^2 \theta+\cos^2 \theta=1

=(1)(\sin^2 \theta-\cos^2 \theta)

=\sin^2 \theta-\cos^2 \theta

=1-\cos^2 \theta-\cos^2 \theta

Using trigonometric identity,

\sin^2 \theta=1-\cos^2 \theta

=1-2\cos^2 \theta

= R.H.S., proved.

Hence, \sin^4 \theta-\cos^4 \theta=1-2\cos^2 \theta, proved.

Similar questions