Show that sin theta divided by 1 minus cos theta plus sin theta divided by cos theta plus cos square theta equals 1 divided by sin theta multipled by sec theta plus cos theta divided
Answers
Answered by
0
Answer:
Consider the LHS.
⇒
sinθ+cosθ−1
sinθ−cosθ+1
Divide numerator and denominator with cosθ.
⇒
cosθ
sinθ
+
cosθ
cosθ
−
cosθ
1
cosθ
sinθ
−
cosθ
cosθ
+
cosθ
1
⇒
tanθ+1−secθ
tanθ−1+secθ
⇒
tanθ−secθ+1
tanθ+secθ−1
Put sec
2
θ−tan
2
θ=1 in the numerator.
⇒
tanθ−secθ+1
(tanθ+secθ)−(sec
2
θ−tan
2
θ)
⇒
tanθ−secθ+1
(secθ+tanθ)[1−secθ+tanθ]
⇒secθ+tanθ
Multiply and divide the above result with (secθ−tanθ).
⇒secθ+tanθ
⇒
cosθ
1
+
cosθ
sinθ
⇒
cosθ
1+sinθ
Hence, LHS=
Similar questions