Math, asked by nikhilnikinik510, 3 days ago

Show that sin theta divided by 1 minus cos theta plus sin theta divided by cos theta plus cos square theta equals 1 divided by sin theta multipled by sec theta plus cos theta divided

Answers

Answered by ankitgupta3215
0

Answer:

Consider the LHS.

sinθ+cosθ−1

sinθ−cosθ+1

Divide numerator and denominator with cosθ.

cosθ

sinθ

+

cosθ

cosθ

cosθ

1

cosθ

sinθ

cosθ

cosθ

+

cosθ

1

tanθ+1−secθ

tanθ−1+secθ

tanθ−secθ+1

tanθ+secθ−1

Put sec

2

θ−tan

2

θ=1 in the numerator.

tanθ−secθ+1

(tanθ+secθ)−(sec

2

θ−tan

2

θ)

tanθ−secθ+1

(secθ+tanθ)[1−secθ+tanθ]

⇒secθ+tanθ

Multiply and divide the above result with (secθ−tanθ).

⇒secθ+tanθ

cosθ

1

+

cosθ

sinθ

cosθ

1+sinθ

Hence, LHS=

Similar questions