Math, asked by rashmeetkaur22, 9 months ago

show that sin⁴ theta + Cos⁴ theta =1- 2 sin² theta cos² theta​

Answers

Answered by senboni123456
5

Step-by-step explanation:

let θ=α, then we have,

 \sin^{4} ( \alpha )   + \cos^{4} ( \alpha )  =  {( \sin ^{2} ( \alpha )   + \cos ^{2} ( \alpha ) )}^{2}  - 2 \sin^{2} ( \alpha )  \cos^{2} ( \alpha )

as: we know that (a²+b²)²=a^4 + b^4 +2a²b²

so,

 \sin^{4} ( \alpha )   + \cos^{4} ( \alpha )  =  {(1)}^{2}  - 2 \sin^{2} ( \alpha )  \cos^{2} ( \alpha )

as: sin²(θ) + cos²(θ)= 1

  =  > \sin^{4} ( \alpha )   + \cos^{4} ( \alpha ) = 1 - 2 \sin^{2} ( \alpha )  \cos^{2} ( \alpha )

on replacing α with θ, we will obtain the above result

Similar questions