Math, asked by bikashkigjjjk, 11 months ago

show that sinix=isinhx​

Answers

Answered by chbilalakbar
2

Answer:

Sin(ix) = iSinhx

Step-by-step explanation:

We have to prove

Sin(ix) = iSinhx

L.H.S = sin(ix)

Since we know that

Sin(x) =  [ e^(i(x)) - e^(-i(x)) ] / (2i)

By putting ix in place of x we get

Sin(ix) =  [ e^(i(ix)) - e^(-i(ix)) ] / (2i)

          =  [ e(-x) - e^(x) ] / (2i)

by taking -1 common we get

L.H.S =  - [ e^(x) - e^(-x) ] / (2i)    

Multiplying and dividing by i      

L.H.S =  -i [ e^(x) - e^(-x) ] / (2i²)    

          = i [ e^(x) - e^(-x) ] / (2)       ∵ i² = -1

          =  iSinhx                             ∵  [ e^(x) - e^(-x) ] / (2) = Sinhx

          = R.H.S

Hence proved

L.H.S = R.H.S

That is

Sin(ix) = iSinhx

Answered by pulakmath007
34

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

FORMULA : 1

Trigonometric function

 \displaystyle \:  \sin x =  \frac{ {e}^{ix} -  {e}^{ - ix}  }{2i}  \:  \:  \: ....(1)

 {Where \:  \:  i = Imaginary \:  Number }

FORMULA : 2

Hyperbolic function

 \displaystyle \:  \sin hx =  \frac{ {e}^{x} -  {e}^{ - x}  }{2}  \:  \:  \: ....(2)

TO PROVE

 \sin ix = i \sin hx

PROOF

LHS

 =  \sin ix

 \displaystyle \:  =  \frac{ {e}^{i \times ix} -  {e}^{ - i \times ix}  }{2i}   \:  \: (using \:formula \:  1)

 \displaystyle \:  =  \frac{ {e}^{ {i}^{2} x} -  {e}^{ - {i}^{2} x}  }{2i}

 \displaystyle \:  =  \frac{ {e}^{  -  x} -  {e}^{  x}  }{2i}   \:  \:  \: ( \because \:  {i}^{2} =  - 1)

 \displaystyle \:  =  i \times \frac{ {e}^{  -  x} -  {e}^{  x}  }{2 {i}^{2} }   \:  \:  \:

 \displaystyle \:  = i \times  \frac{ {e}^{  -  x} -  {e}^{  x}  }{ - 2}   \:  \:  \: ( \because \:  {i}^{2} =  - 1)

 \displaystyle \:  =  i \times \frac{ {e}^{ x} -  {e}^{  -  x}  }{2}   \:  \:

 = i \times  \sin hx \:  \: (using \: formula \: 2)

 = i  \sin hx \:

= RHS

Hence proved

Similar questions