Math, asked by mahaboobkottapally, 1 year ago

show that square of any positive integer cannot be of the from 5q+2 or 5q+3 for any integer q​

Answers

Answered by poojachinta24
2

Answer:

Let a be the positive integer and b = 5.

Then, by Euclid’s algorithm, a = 5m + r for some integer m ≥ 0 and r = 0, 1, 2, 3, 4 because 0 ≤ r < 5.

So, a = 5m or 5m + 1 or 5m + 2 or 5m + 3 or 5m + 4.

So, (5m)2 = 25m2 = 5(5m2) = 5q, where q is any integer.

(5m + 1)2 = 25m2 + 10m + 1 = 5(5m2 + 2m) + 1 = 5q + 1, where q is any integer.

(5m + 2)2 = 25m2 + 20m + 4 = 5(5m2 + 4m) + 4 = 5q + 4, where q is any integer.

(5m + 3)2 = 25m2 + 30m + 9 = 5(5m2 + 6m + 1) + 4 = 5q + 4, where q is any integer.

(5m + 4)2 = 25m2 + 40m + 16 = 5(5m2 + 8m + 3) + 1 = 5q + 1, where q is any integer.

Hence, The square of any positive integer is of the form 5q, 5q + 1, 5q + 4 and cannot be of the form 5q + 2 or 5q + 3 for any integer q.

Answered by sagarsandee365
2

Answer: using euclid's division lemma  

            that is "a=bq+r"

            let  a be any positive integer

            let it be divided by 5

            and quotient be m

       therefore    a=5m+r .......................... where r can be 0 ≤ r > 5

       possible  forms of a can be

             case (i) a=5m

            case  (ii) a=5m+1                      

             case (iii) a=5m+2

             case (iv) a=5m+3

              case (v) a=5m+4

       case (i)

                     a=5m  

                     a²=(5m)²

                     a²=25m²

                     a²=5(5m²)

     on considering (5m²)=q

 then ,        a²= 5q

similarly we solve case(ii),  case(iii), case(iv), case(v)

after solving we get

case(i) =5q

case(ii)=5q+1

case(iii)=5q+4

case(iv)=5q+4

case(v)=5q+1

hence we can say that the square of any positive

integer cannot be in the form of 5q+2 or 5q+3

..................hope this my help you..................................

           

Similar questions