show that square of any positive integer is of the form 4m or 4m+1 where n is any integer
Answers
Answered by
0
4m or 4m+1 can be in any integer because 4m is related to value or variable and value or variable are the same thing but different names and are very the same.
Answered by
3
let a be any positive integer
then
b=8
0≤r<b
0≤r<4
r=0,1,2, 3
case 1.
r=0
a=bq+r
4q+0
(4q)^2
=> 16q^2
4(4q^2)
= let 2q^2 be m
4m
case 2.
r=1
a=bq+r
(4q+1)^2
(4q)^2+2*4q*1+(1)^2
16q^2+8q+1
4(4q^2+2q)+1.
let 4q^2+2q be. m
4m+1
case 3.
r=2
(4q+2)^2
(4q)^2+2*4q*2+(2)^2
16q^2+16q+4
4(4q^2+4q+1)
let 8q^2+4q+1 be m
4m
case4.
r=3
(4q+3)^2
(4q)^2+2*4q*3+(3)^2
16q^2+24q+9
16q^2+24q+8+1
4(4q^2+6q+1)+1
let 4q^2+6q+1 be m
4m+1
from above it is proved.
Similar questions