Show that Square of any positive number is of the form of 3n or 3n+1
Answers
Answered by
2
Answer:
hope it helps you ......
Attachments:
Answered by
0
Step-by-step explanation:
let ' a' be any positive integer and b = 3.
we know, a = bq + r , 0 < r< b.
now, a = 3q + r , 0<r < 3.
the possibilities of remainder = 0,1 or 2
Case I - a = 3q
a² = 9q² .
= 3 x ( 3q²)
= 3m (where m = 3q²)
Case II - a = 3q +1
a² = ( 3q +1 )²
= 9q² + 6q +1
= 3 (3q² +2q ) + 1
= 3m +1 (where m = 3q² + 2q )
Case III - a = 3q + 2
a² = (3q +2 )²
= 9q² + 12q + 4
= 9q² +12q + 3 + 1
= 3 (3q² + 4q + 1 ) + 1
= 3m + 1 ( where m = 3q² + 4q + 1)
From all the above cases it is clear that square of any positive integer ( as in this case a² ) is either of the form 3m or 3m +1.
Hence, it is solved .
Hope it helps you mark as brainliest please
Similar questions
Math,
5 months ago
Math,
5 months ago
Science,
11 months ago
Math,
1 year ago
Social Sciences,
1 year ago