Math, asked by soorajmohan667, 10 months ago

Show that tan^-1 (1÷2) + tan^-1 (2÷11) = tan^-1 (3÷4​)

Answers

Answered by khushisonalisinha071
3

Step-by-step explanation:

LHS = RHS

HENCE PROVED

HOPE MAY HELP Uuuuuu......

Attachments:
Answered by TheValkyrie
4

Answer:

\Large{\underline{\underline{\bf{Given:}}}}

tan^{-1} \dfrac{1}{2}+tan^{-1}  \dfrac{2}{11}=tan^{-1}  \dfrac{3}{4}

\Large{\underline{\underline{\bf{To\:Prove:}}}}

  • LHS = RHS

\Large{\underline{\underline{\bf{Formula\:used:}}}}

tan^{-1}x+tan^{-1}y=tan^{-1}\dfrac{x+y}{1-xy}

\Large{\underline{\underline{\bf{Proof:}}}}

tan^{-1} \dfrac{1}{2}+tan^{-1}  \dfrac{2}{11}=tan^{-1} \dfrac{\dfrac{1}{2} +\dfrac{2}{11} }{1-\dfrac{1}{2}\times \dfrac{2}{11}  }

tan^{-1} \dfrac{1}{2}+tan^{-1}  \dfrac{2}{11}=tan^{-1} \frac{\dfrac{11+4}{22} }{1-\dfrac{2}{22} }

tan^{-1} \dfrac{1}{2}+tan^{-1}  \dfrac{2}{11}=tan^{-1}  \dfrac{\dfrac{15}{22} }{\dfrac{20}{22} }

tan^{-1} \dfrac{1}{2}+tan^{-1}  \dfrac{2}{11}=tan^{-1}  \dfrac{15}{20}

tan^{-1} \dfrac{1}{2}+tan^{-1}  \dfrac{2}{11}=tan^{-1}  \dfrac{3}{4}

= RHS

Hence proved.

Similar questions