Math, asked by Ashishsharanag2922, 11 months ago

Show that tan 48º tan 23º tan 42º tan 67º = 1.

Answers

Answered by sushrutpatilno1
2

Answer:

hence proved ! !!

hope it is clear to you

Attachments:
Answered by sharonr
2

Proved that tan 48º tan 23º tan 42º tan 67º = 1

Solution:

We need to Show that tan 48º tan 23º tan 42º tan 67º = 1

Let’s solve L.H.S  

\tan 48^{\circ} \times \tan 42^{\circ} \times \tan 23^{\circ} \times \tan 67^{\circ}

\tan 48^{\circ} \times \tan \left(90^{\circ}-48^{\circ}\right) \times \tan 23^{\circ} \times \tan \left(90^{\circ}-23^{\circ}\right)

We know that \tan \left(90^{\circ}-x\right)=\cot x

\tan 48^{\circ} \times \cot 48^{\circ} \times \tan 23^{\circ} \times \cot 23^{\circ}

We know that cot x = \frac{1}{tan x}

=\tan 48^{\circ} \times \frac{1}{\tan 48^{\circ}} \times \tan 23^{\circ} \times \frac{1}{\tan 23^{\circ}}

= 1 \times 1 = 1

Hence proved that tan 48º tan 23º tan 42º tan 67º = 1.

Similar questions