Math, asked by kalavakollukeerthana, 1 month ago

show that tan theta(1+sec 2 theta)(1+sec 2^2 theta)(1+sec 2^3 theta)...(1+sec 2^n theta) =tan 2^n theta. ​

Answers

Answered by IamIronMan0
129

Step-by-step explanation:

Note that

 1 + sec \: 2x  \\ \\  =1 +   \frac{1 +  tan {}^{2}  \: x}{1 - tan {}^{2}x }  \\  \\  = \frac{2}{1 -  {tan}^{2}x }  \\  \\  =  \frac{1}{tan \: x}  \frac{2tan \: x}{1 -  {tan}^{2}x }  \\  \\  = cot \: x \: tan \: 2x

Which will result a recursive formula

 = (cot \: x \: tan \: 2x)(cot 2x \tan \: 4x)....(cot \:  {2}^{n - 1} x \: tan {2}^{n} x)

So All terms of ( tan and cot of same angle ) will cancel out except first and last

 =  \cot(x)  \tan( {2}^{n}x )

Answered by 7esuryanshumohansing
17

Step-by-step explanation:

solution :

hope it helps you ok please ask me anything regarding this

Attachments:
Similar questions